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SUMMARY 

Equations are derived to calculate both minimum (H/U) and optimum analysis 
time of a complex mixture for serially configured binary gas chromatographic col- 
umns. The theory presented is essential to optimization of speed of analysis with 
binary coupled columns, and complements our already published approach to cor- 
rection for the effects of pressure gradient in the application of window diagram 
optimization. Through the examination of the derived equations, and with the aid 
of several graphical examples, we are able to identify those conditions which are not 
favoured by serial operation. Finally, a comparison is made with columns of mech- 
anically mixed packings and conditions identified where each is likely to be better 
than the other in terms of attainable speed of analysis. 

INTRODUCTION 

The difficulty of chromatographic separation of a mixture may be quantified 
in terms of the number of theoretical plates required for the satisfactory resolution 
of all desired components. The most demanding separation of consecutively eluting 
mixture components fixes the overall difficulty. The window diagram technique, in- 
troduced for optimizing mixed substrate composition for separation of complex mix- 
tureslm5, functions by minimizing overall plate requirement. A window diagram 
shows, for instance, the variation with substrate composition of some parameter 
related to plate requirement for the most difficult to separate pair of components. A 
typical parameter is the relative adjusted retention (IX), and the variation is almost 
invariably discontinuous, the discontinuities being due to changes in order of elution 
and changes in the identity of the most difficult pair. 

Computer programs have been described for implementing the original win- 
dow diagram technique’j,‘, and the approach has been successively refineda-’ l such 
that readily measured retention parameters such as capacity factors are sufficient to 
implement the optimization, and even mixtures of unknown composition may be 
tackled. In addition, the approach to minimizing analysis time, developed by Purnell 
and Quinn , l2 has been applied in conjunction with window diagram optimization in 
order that fastest analysis be the prime objective13-15. 
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Recentlyr6-’ 8 we have turned our attention to the optimization of relative 
lengths of serially coupled columns. Such operation is most convenient for combining 
retention characteristics of more than one stationary phase in open tubular chro- 
matography, particularly where different surface treatments are required for each of 
the phases. The practice of coupling columns in series also has the advantage that 
lengths of pure phase column will usually be available after the initial measurement 
of retentions necessary for the production of a window diagram, and the sections 
may again be separated once an analysis has been achieved. Equations have been 
derived to correct for the effects of carrier gas compressibility within both open 
tubular’ 6,1 7 and packedls column sections. The equations are general in that column 
sections are not required to have identical internal diameters, and in the case of 
packed columns they need not have identical specific permeabilities or porosities. 

The efficiency of coupled columns has been the topic of some discussion in the 
past (e.g. refs. 19 and 20), but here we are primarily concerned with optimizing speed 
of analysis. Consequently equations are derived below in terms of the ratio of the- 
oretical plate height to mean carrier velocity, (H/U), since achievable time of analysis 
is directly related to this quantity rather than simply the plate height. For homoge- 
neous columns we knowI that optimum speed of analysis calls for operation at high 
carrier velocity thereby minimizing (H/U). This is shown to be equally valid for seri- 
ally coupled columns. As we’shall see, the overall (H/U) for a binary coupled column 
of some effective composition is directly related to the (H/U) for the individual sec- 
tions. The overall value is, therefore, minimized when conditions dictate minimum 
(H/U) in each of the two sections, i.e. mean carrier velocity must be high in both 
sections. Importantly, it follows that minimum (H/U) may be predicted unambigu- 
ously for a coupled column of some desired effective composition from the minimum 
(H/U) of the two individual sections. The question is, how? 

THEORY 

Eficiency of serially coupled columns 
The observed theoretical plate height for a column of length L is defined by 

2 

(1) 

where tR is the retention time of the solute band within the column and + is the 
standard deviation of the solute band in units of time. Now suppose we have two 
column sections, A and B, coupled in series. Retention times within the sections will 
be additive, as will be the variances in retention due to each of the sections, i.e. for 
the coupled column, 

fR = tRA + tRB 

and 

gt 2 = dtA2 + dtB2 
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It follows from eqn. 1, and the above, that 

bt 
2 

= tRA’HA/LA + h2HBIL (2) 

where HA and HB are the plate heights for the column sections corresponding to 
conditions existing within them, and LA and LB are the section lengths. Therefore, 
the observed plate height for the coupled column is given by 

H = (LA + LB) 
(tru2HdLA + hm2H&d 

(fRA + fRBj2 1 
(3) 

which is equivalent to the expression for H derived by Giddingslg. 
The retention time of a substance within a column section is given by 

tR = td (1 + k’) (4) 

where td is the retention time for a nonsorbed substance, i.e. the dead time for the 
column section, and k’ is the capacity factor of the retained substance in the section. 
Now let us define, as we have previously’ 6--l *, a parameter Pas the ratio of the column 
section dead times, 

p = fdA/fdB 

and a new parameter K as the ratio of (1 + k’) for the sections, 

K = (1 + k’,)/(l + kl,,) 

(5) 

(6) 

The product PK is then simply the ratio of the retention times within the two sections, 
that is, tRA/tRB. I?qn. 3 may now be expressed in the form 

H = (L,, + LB) 
(P'~~HA/LA + HE/LB) 

(PK + I)2 1 

It follows directly from eqn. 7 that, since N = L/H, 
retical plates for the coupled column (N) is given by 

_ = (pzK2/NA + l/NB) 1 

N (PK + 1)2 

(7) 

the observed number of theo- 

(8) 

where NA and Na are the number of plates that would be observed for the individual 
sections for extant conditions. The above expression is equivalent to that derived by 
Kwok et aLzO in terms of corrected retention volumes and mean column section 
pressures. 

Now as mentioned earlier, analysis time is directly proportional to (H/ii) where 
mean carrier velocity, I, is defined as L/t& Therefore, for the coupled column, 

c = (LA + LB)/(fdA + hB> 
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and it follows from eqn. 7 by substitution first for LA and LB separately, and then, 
for (LA + LB), that 

_ = (P + 1) H 

ii (PK + I)2 p(2) + (2)] (9) 

For fastest possible analysis, (H/C) must be minimized for the most difficult to sep- 
arate components. Since, for a given complex mixture, values of K are fixed and, as 
has been discussed previously1’J8, P is fixed by the window diagram optimization, 
it follows that both (HA/i’&) and (H B uB must be minimized i.e., the coupled column /- ) 
sections must be of sufficient length such that mean carrier velocity within each cor- 
responds to points on their respective Van Deemter curves at which lines drawn from 
the origin are effectively asymptotic. For such conditions both (HA/rZA) and (H&B) 
are themselves then constant and eqn. 9 gives us immediate access to minimum (H/ii) 
for the required coupled column. Eqn. 7 and 8 are not useful in predicting optimum 
analysis time. 

In order to examine the dependence of minimum (H/ii) on the column section 
parameters it seems expedient to define, as before17J8 ,a function f of true length 
fraction, 1, such that the observed overall capacity factor for a coupled column is 
given by 

k’ = f&A + fBklB (10) 

with fA + fB = 1. It was shown17*18 that fA is related to P through 

fA = P/(P + 1) and P = fJ(l - fA) 

It is eqn. 10, or an equivalent, which forms the basis of window diagram optimization 
of fA and, hence, of P, the true length fractions, i., and lx, then being determined for 
some overall column length and pressure drop. 

At this point it seems worth pointing out that although P is fixed for optimum 
separation, the value of K may be different for each component of the mixture, and 
indeed, there must be some variation of this quantity for the window diagram ap- 
proach to be worth pursuing. It is evident from eqns. 7, 8 and 9 that there can be a 
variation in H, N and (H/ii) for the components eluted, a variation over and above 
that normally observed due to differing diffusivities. Therefore, for coupled column 
systems we would not generally expect to see the normal approximately linear vari- 
ation of peak width with retention. 

Returning to the relationship expressed in eqn. 9 we may now examine the 
variation of minimum (H/ii) withf* over its full range of 0 to 1 (corresponding to 
P from 0 to co) for any K, (H/r& and (H/i&. In Fig. 1 we show this variation for 
(H/ii)* = (H/z& = 0.01 set and various K from 0.1 to 10. Differentiation of eqn. 9 
with respect to P shows that for K # 1, (H/ii) reaches a maximum when PK = 1.0, 
i.e. when the solute band spends an equal time within each section. It may be seen 
that a short section of strongly retaining column can have a disastrous effect on 
(H/ii). For example, with a K of 10, (H/ii) has a maximum of 0.03025 set at fA = 
0.0909 (corresponding to P = O.l), more than three times that for the individual 
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Fig. 1. Variation of (H/c?) withy. for (H/t& = (H/ui = 0.01 se-c and K = 10, 5, 2, 1, 0.5, 0.2 and 0.1. 

sections. The same column materials reversed would have a K of 0.1, (H/C) again 
reaching a maximum of 0.03025 set now withf, = 0.9091. The column section order 
has no effect on minimum (H/U) for a particular overall effective composition, even 
though length fractions for the two configurations must differ for finite pressure drop. 
Not surprisingly, if K = 1, then (H/C) is independent of column composition, and 
within the range 4 c K < 2 the effect is not significant, giving rise to at most a 
12.5% increase in minimum (H/C). 

Fig. 2 shows the variation of (H/C) withf, for the same range of K (0.1 to 10) 
but with a lo-fold difference in minimum (H/C) i.e. (H/i& = 0.05 set and (H/z& 
= 0.005 sec. Here we see that when K = 1, (H/G) varies linearly withf,; K > 1 gives 
rise to positive deviation from linearity whilst, with K c 1 negative deviations result. 
Differentiation of eqn. 9 with respect to P reveals that (H/ii) reaches a maximum 
when 

P = (2K - FE - l)/K(2KE - FE - 1) 

with the constriction that P > 0, and where E = (H/zi)A/(H/zi)e. Again taking a fairly 
extreme example of K = 10 with E here also equal to 10, (H/E) has a maximum at 
P = 0.1224 orf* = 0.1091. At this effective composition minimum (H/C) = 0.1400 
set, a 28-fold increase in minimum (H/C) on change offA from 0.0 to 0.1091. We see 
that the deleterious effect on (H/C) of a short section of strongly retaining column 
may be enormously exacerbated if this section is also relatively inefficient. 

The above discussion describes certain sets of conditions which must be avoid- 
ed if overall efficiency is to be observed for serially coupled columns. However, if we 
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Fig. 2. Variation of (H/C) withy, for (H/ii)), = 0.05 set, (H/ii& = 0.005 set and K = 10, 5, 2, 1, 0.5, 0.2 
and 0.1. 

consider fast analysis to be the primary objective then (I@) is but one of the gov- 
erning factors. The effect of serial column operation on analysis time will now be 
discussed. 

Optimized speed of analysis with serially coupled columns 
For the sake of simplicity we shall confine our study to the minimization of 

the time for baseline separation of a two-component mixture, a situation applying 
also for a more complex mixture where the most difficult pair to separate corresponds 
to the last eluted components. The analysis time is then given bylz 

f R = Ncq (11) 

where k’ is the capacity factor of the second eluted of the pair. 
Assuming that we are concerned with optimizing length fractions of given 

packed column materials or open tubular columns, and we are therefore unable to 
alter solute capacity factors for the individual columns, Nrcq is most suitably substi- 
tuted by 36 [a’/(a’ - l)]‘, where a’ is the relative uncorrected (for dead time) retention 
of the most difficult to separate pair. As explained previously14J 5, a window diagram 
may be used to maximize a’ and thereby minimize Nres. Furthermore, for complex 
mixtures, since Nrcq is so sensitive to small changes in a’ in the usual regions of 
interest, the proper application of a window diagram fixes the optimum fA and P as 
well as the minimum Nreq. 

From eqn. 10 it may be shown, following substitution for fe and &, or for fA 
and kX, that for some intermediate P or fA, 
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Also, from eqn. 9 

(P + 1) (PFE + 1) 

E(PK + 1)2 

(P + 1) (PPE + 1) 

(PK + 1)2 

Our expression for analysis time (eqn. 11) then becomes 

I 

(12) 

(13) 

From eqns. 14a and 14b we are able to make some simple deductions concerning 
analysis time. 

(i) If KE = 1 then fR/Nrcq is constant throughout the range of effective com- 
position. For such cases, improvement in N req achieved through application of the 
window diagram approach would be reflected by a directly proportional improve- 
ment in analysis time. 

(ii) If K = 1, the expressions for analysis time reduce to 

tR = Nreq[‘pp”;It)][qB (1 + k’) 

where k’ = klA = kB. This in turn may be reduced to 

Therefore, if the two column sections are equally retentive then (H/ii), and hence 
f~/Ncq, will be linearly dependent on f*. For column sections of very different mini- 
mum (H/ii) this may influence the choice of window. 

(iii) Finally, it is simple to show that when KE > 1 

(H/i&( 1 + k’B) < (H/3(1 + k’) < (H/u3~(1 + VA) 

and when KE c 1 

(H/&(1 + k’B) > (H/0(1 + k’) > (H/6)*(1 + k’J 
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Fig. 3. Variation of (H/C)(l + k’)/(H/c&(l + k’n) withy, for K = 10, 5, 2, LO.5, 0.2 and 0.1 with KE 

held constant at 10. 

This is important since it tells us that even though (H/C) may, as illustrated earlier, 
pass through a maximum at some intermediate composition, fR/Nrcq will never exceed 
the larger of (H/&(1 + k’,) and (H/ti)n(l + klB). It also follows that tR/Nrcq will 
never be less than the smaller of these two extrema. 

To illustrate the effect more clearly, Fig. 3 shows plots of (H/ti)(l + k’)/ 

(f@)A(l + &A) f or various K, with KE held constant at 10. So when K = 10 then 
E= 1 and we can make a comparison with the plot of (H/zi) for K = 10 shown in 
Fig. 1. The improvement in (H/G) to the right of the maximum in Fig. 1 is seen to 
be more than compensated by the increase in (1 + k’). We see also confirmation of 
point (ii) above in that, when K = 1 then tR/Nrcq is linearly dependent on fA. In 
addition, for the examples of KE = 10 illustrated, we may deduce that when K > 
1, (H/tl)(l + k’) is more strongly influenced by (H/ii)A(l + k’,&), and when K < 1 
section B exerts the stronger influence, i.e. (H/6)(1 + k’) is dominated by the more 
strongly retaining section. We can show that this is more generally true simply by 
holding E constant and varying K. Fig. 4 shows plots of (H/ij)(l + k’)/(H/C))a(l + 
k’A) for several values of K between 0.1 and 5 with E held at 5. For K = 0.1, 0.125, 
0.3 and 0.5, (H/$(1 + k’) is dominated by section B, and when K = 2 and 5 section 
A dominates, supporting the assertion. It will be noted that when K = 1, the variation 
in (H/0(1 + k’) is again linear [see point (ii)]. Also when K = 0.2 the variation is 
linear and constant. This is because KE = 1 and we can expect no change in the 
product (H/ii)(l + k’) [see point (i)]. 

Finally, to return to Fig. 3, all plots correspond to fR/Nreq for elution of some 
mixture on section A being 10 times greater than for elution on B. If we assume that 
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Fig. 4. Variation of (H/u31 + k’)/(H&(l + k’,,) withy, for K = 5, 2, 1, 0.5, 0.3, 0.2, 0.125 and 0.1 
with E held constant at 5. 

a window diagram indicates an optimum at some intermediatef* then it is immedi- 
ately obvious that we would rather this difference be due to relatively poor efficiency 
with A (see plots for K = 10,5, 2 and 1, corresponding to E = 1, 2, 5 and 10, 
respectively). If the efficiency of A is particularly poor, but partially compensated by 
low retention, so much the better (see plots for K = 0.5,0.2 and 0.1, corresponding 
to E = 20, 50 and 100, respectively). To sum up, fast analysis with coupled columns 
is favoured when the section exhibiting the lower (H/tl)(l + k’) has the stronger 
retention, i.e. when KE > 1 and K < 1, or when KE < 1 and K > 1. 

Comparison of speed of analysis obtainable with serially coupled columns and with 
mechanically mixed packed columns 

In order to make the comparison in terms of attainable analysis time we have 
to make an assumption concerning the efficiency of columns containing mechanically 
mixed packings. It has been our experience that for such columns the best attainable 
(H/C) has proved to have been no better than that predicted from a linear dependence 
of (H/C) on composition by weight for packing materials of equal bulk density, mesh 
size and porosity (to all intents and purposes, for stationary phases coated on iden- 
tical support). We shall therefore assume such a dependence. For such columns we 
can also assume linear dependence of k’ on composition by weight*4J5. It follows 
that (H/ri)(l + k’) and tR/Nrcq are quadratic functions of composition. 

The comparison of achievable analysis times must be made between a mech- 
anically mixed column with weight fraction WA of packing A, and a coupled column 
with an identical effective compositionfA of column section A. To this end, an expres- 
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sion for analysis time for a mixed column may be derived in terms of P for an 
equivalent coupled column: 

tR = Nreq 
(PK + l)(PE + 1) 

m(P + 1)’ 
(1 + k’A) (15) 

where WA = P/(P + 1). It follows from eqns. 14a and 15 that the ratio of minimum 
analysis time with coupled columns , t RC, to minimum analysis time with an equivalent 
mixed COhIIIn, fRM, iS given by 

Assuming P > 0, tRC/tRM C 1 when either 

K< landE> 2i-p’pK 
1 + K + 1 2PK 

or, 

K> landE< 2+pi-pK 
1 + K + 1 2PK 

Fig. 5. Variation of (H/u?1 + k’)/(iY/i&(l + k’d withy, for mechanically mixed packings with 
2, 1, 0.5, 0.3, 0.2, 0.125 and 0.1 with E held constant at 5; linearity of (H/C) with We assumed. 

K= 5, 
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That is to say, for certain sets of conditions a coupled column configuration is likely 
to carry out an analysis faster than an equivalent mechanically mixed column. Fig. 
5 shows the variation of (H/fi)(l + k’)/(H/&(l + k’,) for mechanically mixed 
columns with E = 5 and various K from 0.1 to 5, exactly the conditions considered 
for coupled columns in Fig. 4. We see that (H/6)(1 + k’) may pass through a true 
maximum at an intermediate composition, unlike with coupled column systems. 

As an example of comparison between mixed and coupled columns, consider 
K = 2. Then for &/tin,, < 1, E > (2 f 3P)/(3 + 4P). Therefore, if E < 2/3 we can 
expect tRC C tRM over the full intermediate composition range (P: 0 to co). Converse- 
ly, if E > 314 then tRC > tRM over the full intermediate range. If 2/3 < E < 3/4 then 
tRc < tRM for part of the range and tRC > tRM for the remainder of the range. Fig. 
6 illustrates just such an occurrence wherein tRC and tRM are plotted for K = 2 and 
E = 0.6, 0.7 and 0.8. 

0.6 I I I 1 
0.0 0.2 0.4 0.6 0.8 1 

fA or WA 

1 

Fig. 6. Variation of (H/u?1 + k’)/(H/i&(l + k’.,) with composition for serially connected columns 
(-) and mechanically mixed columns (------) with K = 2 and E = 0.6,0.7 and 0.8 (upper, middle and 
lower pairs, respectively). 

Finally, it is interesting to note that the conditions which favour coupled col- 
umn operation (either K c 1 with KE > 1, or K > 1 with KE < 1) are more 
restrictive than, and are enclosed within, the conditions for tRC < tRM. Also when K 
= 1 then tRC = tRM for all values of E. 

CONCLUSIONS 

The equations derived for minimum (H/G) and for fastest time of analysis are 
essential to our approach to optimization of speed of analysis with binary coupled 
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columns via the window diagram technique. The general conditions disadvantageous 
to serial column operation are character&d, and for the first time we are in a position 
to determine the optimized time of analysis for serial column operation and compare 
it to the best time of analysis expected for mechanically mixed packed columns. 
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