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SUMMARY

Equations are derived to calculate both minimum (H/#) and optimum analysis
time of a complex mixture for serially configured binary gas chromatographic col-
umns. The theory presented is essential to optimization of speed of analysis with
binary coupled columns, and complements our already published approach to cor-
rection for the effects of pressure gradient in the application of window diagram
optimization. Through the examination of the derived equations, and with the aid
of several graphical examples, we are able to identify those conditions which are not
favoured by serial operation. Finally, a comparison is made with columns of mech-
anically mixed packings and conditions identified where each is likely to be better
than the other in terms of attainable speed of analysis.

INTRODUCTION

The difficulty of chromatographic separation of a mixture may be quantified
in terms of the number of theoretical plates required for the satisfactory resolution
of all desired components. The most demanding separation of consecutively eluting
mixture components fixes the overall difficulty. The window diagram technique, in-
troduced for optimizing mixed substrate composition for separation of complex mix-
tures!™%, functions by minimizing overall plate requirement. A window diagram
shows, for instance, the variation with substrate composition of some parameter
related to plate requirement for the most difficult to separate pair of components. A
typical parameter is the relative adjusted retention («), and the variation is almost
invariably discontinuous, the discontinuities being due to changes in order of elution
and changes in the identity of the most difficult pair.

Computer programs have been described for implementing the original win-
dow diagram technique$-’, and the approach has been successively refined®~!! such
that readily measured retention parameters such as capacity factors are sufficient to
implement the optimization, and even mixtures of unknown composition may be
tackled. In addition, the approach to minimizing analysis time, developed by Purnell
and Quinn!2, has been applied in conjunction with window diagram optimization in
order that fastest analysis be the prime objective!315,
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Recently'®"!® we have turned our attention to the optimization of relative
lengths of serially coupled columns. Such operation is most convenient for combining
retention characteristics of more than one stationary phase in open tubular chro-
matography, particularly where different surface treatments are required for each of
the phases. The practice of coupling columns in series also has the advantage that
lengths of pure phase column will usually be available after the initial measurement
of retentions necessary for the production of a window diagram, and the sections
may again be separated once an analysis has been achieved. Equations have been
derived to correct for the effects of carrier gas compressibility within both open
tubular!®-'” and packed!® column sections. The equations are general in that column
sections are not required to have identical internal diameters, and in the case of
packed columns they need not have identical specific permeabilities or porosities.

The efficiency of coupled columns has been the topic of some discussion in the
past (e.g. refs. 19 and 20), but here we are primarily concerned with optimizing speed
of analysis. Consequently equations are derived below in terms of the ratio of the-
oretical plate height to mean carrier velocity, (H/u), since achievable time of analysis
is directly related to this quantity rather than simply the plate height. For homoge-
neous columns we know'? that optimum speed of analysis calls for operation at high
carrier velocity thereby minimizing (H/#). This is shown to be equally valid for seri-
ally coupled columns. As we shall see, the overall (H/i) for a binary coupled column
of some effective composition is directly related to the (H/«) for the individual sec-
tions. The overall value is, therefore, minimized when conditions dictate minimum
(H/u) in each of the two sections, i.e. mean carrier velocity must be high in both
sections. Importantly, it follows that minimum (H/#) may be predicted unambigu-
ously for a coupled column of some desired effective composition from the minimum
(H/u) of the two individual sections. The question is, how?

THEORY

Efficiency of serially coupled columns
The observed theoretical plate height for a column of length L is defined by

]2
o=t H M

where tg is the retention time of the solute band within the column and g, is the
standard deviation of the solute band in units of time. Now suppose we have two
column sections, A and B, coupled in series. Retention times within the sections will
be additive, as will be the variances in retention due to each of the sections, i.e. for
the coupled column,

IR = Ira T IrB
and

2 — 2 2
g = ga” t+ op
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1t follows from eqn. 1, and the above, that

02 = tra’Ha/La + trs*Hs/Ls 2
where H, and Hp are the plate heights for the column sections corresponding to

conditions existing within them, and L, and Lg are the section lengths. Therefore,
the observed plate height for the coupled column is given by

(tra>Ha/Ls t+ tps”Hp/Ls)
H=(Ls+ L 3
(La B)I: (fra + fzp)? @
which is equivalent to the expression for H derived by Giddings'®.
The retention time of a substance within a column section is given by
R=ta(l + Kk » (C))

where t, is the retention time for a nonsorbed substance, i.e. the dead time for the
column section, and k' is the capacity factor of the retained substance in the section.
Now let us define, as we have previously!6—1# a parameter P as the ratio of the column
section dead times,

P = taa/tan &)
and a new parameter K as the ratio of (1 + k’) for the sections,
K=+ K[ + Kb ©6)

The product PK is then simply the ratio of the retention times within the two sections,
that is, tra/trs- Eqn. 3 may now be expressed in the form

M

H = (Ls + L) [(PZKZHA/LA + HB/LB)]

(PK + 1)?

It follows directly from eqn. 7 that, since N = L/H, the observed number of theo-
retical plates for the coupled column (X) is given by

1 _ (P*K*/Na + 1/Ns) ®
N (PK + 1)?

where N, and Np are the number of plates that would be observed for the individual
sections for extant conditions. The above expression is equivalent to that derived by
Kwok ez al.2° in terms of corrected retention volumes and mean column section
pressures.

Now as mentioned earlier, analysis time is directly proportional to (H/#) where
mean carrier velocity, %, is defined as L/z4. Therefore, for the coupled column,

i = (La + Lp)/(taa + tam)
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nd it follows from eqn. 7 by substitution first for L, and Ly separately, and then,
r

an
£ ot
for (Ls + L), that

a P+ 077 \aa) " \as/] g
For fastest possible analysis, (H/#) must be minimized for the most difficult to sep-
arate components. Since, for a given complex mixture, values of X are fixed and, as
has been discussed previously'”-'8, P is fixed by the window diagram optimization,
it follows that both (H,/ii,) and (Hg/iiz) must be minimized i.e., the coupled column
sections must be of sufficient length such that mean carrier velocity within each cor-
responds to points on their respective Yan Deemter curves at which lines drawn from
the origin are effectively asymptotic. For such conditions both (H,/i,) and (Hg/its)
are themselves then constant and eqn. 9 gives us immediate access to minimum (H/#)
for the required coupled column. Eqn. 7 and 8 are not useful in predicting optimum
analysis time.

In order to examine the dependence of minimum (/@) on the column section
parameters it seems expedient to define, as before!”-18 ,a function f of true length
fraction, /, such that the observed overall capacity factor for a coupled column is

LLIOIL, Uil Lild Dyerved viall L4 101

given by

= k. + -k (10)
\+vy
with fo + fg = 1. It was shown!7:18 that f, is related to P through

Ja = P[P + D)and P = f,/(1 — f,)

nmivalant which farme the hacie t\f‘ll‘
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of f, and, hence, of P; the true length fractions, I, and I, then being determined for
some overall column length and pressure drop.

At this point it seems worth pointing out that although P is fixed for optimum
separation, the value of K may be different for each component of the mixture, and
indeed, there must be some variation of this quantity for the window diagram ap-
proach to be worth pursuing. It is evident from equns. 7, 8 and 9 that there can be a
variation in H, N and (H/#) for the components eluted, a variation over and above
that normally observed due to differing diffusivities. Therefore, for coupled column
systems we would not generaliy expect to see the normal approximately linear vari-
ation of peak width with retention.

Returning to the relationship expressed in eqn. 9 we may now examine the
variation of minimum (/&) with f, over its fuil range of 0 to 1 (corresponding to
P from 0 to o) for any K, (H/#)a and (H/ia)g. In Fig. 1 we show this variation for
(H/i)a = (HJi)s = 0.01 sec and various KX from 0.1 to 10. Differentiation of eqn. 9
with respect to P shows that for K # 1, (H/#) reaches a maximum when PK = 1.0,
i.e. when the solute band spends an equal time within each section. It may be seen
that a short section of strongly retaining column can have a disastrous effect on

(Hji). For exampie, with a K of 10, (H/u) has a maximum of 0.03025 sec at f, =
0.0909 (corresponding to P = 0.1), more than three times that for the individual
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Fig. 1. Variation of (H/it) with f, for (Hfi)a = (H/i)s = 0.0l secand K = 10, §, 2, 1, 0.5, 0.2 and 0.1.

sections. The same column materials reversed would have a X of 0.1, (H/&) again
reaching a maximum of 0.03025 sec now with f, = 0.9091. The column section order
has no effect on minimum (H/i) for a particular overall effective composition, even
though length fractions for the two configurations must differ for finite pressure drop.
Not surprisingly, if K = 1, then (H/#) is independent of column composition, and
within the range + < K < 2 the effect is not significant, giving rise to at most a
12.5% increase in minimum (H/#&).

Fig. 2 shows the variation of (H/#&) with f, for the same range of X (0.1 to 10)
but with a 10-fold difference in minimum (H/#%) i.e. (Hf@)a = 0.05 sec and (H/i)g
= 0.005 sec. Here we see that when K = 1, (H/#) varies linearly with f,; K > 1 gives
rise to positive deviation from linearity whilst, with X < 1 negative deviations result.
Differentiation of eqn. 9 with respect to P reveals that (H/u) reaches a maximum
when

P = 2K — K*E — 1)/KQ2KE — K*E - 1)

with the constriction that P > 0, and where E = (H/u1)5/(H/#)p. Again taking a fairly
extreme example of K = 10 with E here also equal to 10, (H/#) has a maximum at
P = 0.1224 or fo = 0.1091. At this effective composition minimum (H/a) = 0.1400
sec, a 28-fold increase in minimum (H/#) on change of f, from 0.0 to 0.1091. We see
that the deleterious effect on (H/#) of a short section of strongly retaining column
may be enormously exacerbated if this section is also relatively inefficient.

The above discussion describes certain sets of conditions which must be avoid-
ed if overall efficiency is to be observed for serially coupled columns. However, if we
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Fig. 2. Variation of (H/@) with f, for (H/i)a = 0.05 sec, (H/i#)s = 0.005 sec and X = 10, 5,2, 1, 0.5, 0.2
and 0.1.

consider fast analysis to be the primary objective then (H/i) is but one of the gov-
erning factors. The effect of serial column operation on analysis time will now be
discussed.

Optimized speed of analysis with serially coupled columns

For the sake of simplicity we shall confine our study to the minimization of
the time for baseline separation of a two-component mixture, a situation applying
also for a more complex mixture where the most difficult pair to separate corresponds
to the last eluted components. The analysis time is then given by!2

IR = Nieq l:‘—:_—] 1+ %) (1

where k' is the capacity factor of the second eluted of the pair.

Assuming that we are concerned with optimizing length fractions of given
packed column materials or open tubular columns, and we are therefore unable to
alter solute capacity factors for the individual columns, N,., is most suitably substi-
tuted by 36 [o'/(a’ — 1)]?, where &’ is the relative uncorrected (for dead time) retention
of the most difficult to separate pair. As explained previously'+:15, a window diagram
may be used to maximize o' and thereby minimize N,.q. Furthermore, for complex
mixtures, since N,.q iS so sensitive to small changes in a’ in the usual regions of
interest, the proper application of a window diagram fixes the optimum f, and P as
well as the minimum Nyq.

From eqn. 10 it may be shown, following substitution for f and kg, or for f
and kj, that for some intermediate P or fj,
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Also, from eqn. 9

H _[(P+1)(PKE + )]

Pr L(DF L 1\2 "
(23 L u\l I L) _ Lu

(PKE + D[

ar m Pz N P RN
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_ [(PK’E + I)][H ,
tk-Nreq_ (PK+ 1) ]I:ll:]l! (1 +kB)

-~

(13)

(14b)

From eqns. 14a and 14b we are able to make some simple deductions concerning

analysis time.

MNTIFEFE =— 1 than Anotant theanahant tha snanga ~

anticra ~A

) i nad = 1 inln LRIlVreq is constant th IrOUgnout unc range of effective com-
position. For such cases, improvement in N, achieved through application of the
window diagram approach would be reflected by a directly proportional improve-

ment in aualy‘aib timme.
(ii) If K = 1, the expressions for analysis time reduce to

[(PE+ 1)J[H]J
= Neg | —= 1+ kK
w = NG (7] 04
where k' = k’s = k’p. This in turn may be reduced to

R = Nreq fa(Hf#)a + fa(H[i)p](1 + k')

Therefore, if the two column sections are equally retentive then (H/#), and hence
Ig/N:eq, Will be linearly dependent on f,. For column sections of very different mini-

mum (H/i7) this may influence the choice of window.
(iii) Finally, it is simple to show that when KE > 1

(Hfayg(1 + k's) < (Hfa@)(1 + k') < (H[@a(l + k')
and when KE < 1

(Hinp(l + k's) > (Hfa)1 + k) > (Hfi)a(l + &'a)
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Fig. 3. Variation of (H/@)(1 + k')/(H/w)a(l + k’») with f, for K = 10, 5,2, 1,0.5, 0.2 and 0.1 with KE
held constant at 10.

This is important since it tells us that even though (H/#) may, as illustrated earlier,
pass through a maximum at some intermediate composition, fg/Nreq Will never exceed
the larger of (H/#)a(1 + k') and (H/@)s(l + k's). It also follows that fgr/Nyeq Will
never be less than the smaller of these two extrema.

To illustrate the effect more clearly, Fig. 3 shows plots of (H/a)(1 + k’)/
(H/#@)a(1 + k'4) for various K, with KE held constant at 10. So when K = 10 then
E = 1 and we can make a comparison with the plot of (H/#) for K = 10 shown in
Fig. 1. The improvement in (H/#) to the right of the maximum in Fig. 1 is seen to
be more than compensated by the increase in (1 + k). We see also confirmation of
point (ii) above in that, when K = 1 then fg/Ny¢q is linearly dependent on f,. In
addition, for the examples of KE = 10 illustrated, we may deduce that when K >
1, (H/@)(1 + k') is more strongly influenced by (H/i#)a(1 + k'a), and when K < 1
section B exerts the stronger influence, i.e. (H/#)(1 + k') is dominated by the more
strongly retaining section. We can show that this is more generally true simply by
holding E constant and varying K. Fig. 4 shows plots of (H/a)(1 + k")/(H/)a(1 +
k') for several values of K between 0.1 and 5 with E held at 5. For K = 0.1, 0.125,
0.3 and 0.5, (H/@)(1 + k') is dominated by section B, and when K = 2 and 5 section
A dominates, supporting the assertion. It will be noted that when K = 1, the variation
in (H/#)(1 + k') is again linear [see point (ii)]. Also when K = 0.2 the variation is
linear and constant. This is because KE = 1 and we can expect no change in the
product (H/@)(1 + k') [see point (i)].

Finally, to return to Fig. 3, all plots correspond to fr/N;q for elution of some
mixture on section A being 10 times greater than for elution on B. If we assume that
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Fig. 4. Variation of (H/i#)(1 + k')/(H/@)a(1 + k’)) with f, for K = 5,2, 1, 0.5, 0.3, 0.2, 0.125 and 0.1
with E heid constant at 5.
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ately obvious that we would rather this difference be due to relatively poor efficiency
with A (see plots for K = 10,5, 2 and 1, correspondmg to E =1, 5 and 10,

macmantivaly) T thna affliaiamany AF A $0 mnsdialosle: samnnn Lot aantialle AA....A-H.\«AJ Tac
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low retention, so much the better (see plots for K = 0.5, 0.2 and 0.1, corresponding
to E = 20, 50 and 100, respectively) To sum up, fast analysis with coupled columns

lb 1avuurcu WllCi’l an bCLLlOIl CXﬂlDllll’lg lﬂC lOWCI' \n/u)u + K) lldS U’lC stronger
retention, i.e. when KE > 1 and K < 1, or when KE < land X > 1.

Comparison of speed of analysis obtainabie with seriaily coupied coiumns and with
mechanically mixed packed columns

In order to make the comparison in terms of attainable analysis time we have
to make an assumption concerning the efficiency of columns containing mechanicaily
mixed packings. It has been our experience that for such columns the best attainable
(H/u) has proved to have been no better than that predicted from a linear dependence
of (H/#) on composition by weight for packing materials of equal bulk density, mesh
size and porosity (to all intents and purposes, for stationary phases coated on iden-
tical support). We shall therefore assume such a dependence. For such columns we
can also assume linear dependence of k' on composition by weight'4-15, It follows
that (H/u)(1 + k) and tg/N,.q are quadratic functions of composition.

The comparison of achievable analysis times must be made between a mech-
anically mixed column with weight fraction w, of packing A, and a coupled column
with an identical effective composition f, of column section A. To this end, an expres-
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sion for analysis time for a mixed column may be derived in terms of P for an
equivalent coupled column:

o = Noag [(P K+ I(PE + ”] [ﬂ A+ k) (15)

KE(P + 1)?

where w, = P/(P + 1). It follows from eqns. 14a and 15 that the ratio of minimum
analysis time with coupled columns, #gc, to minimum analysis time with an equivalent
mixed column, try, is given by

tre _ (PK2E + 1) (P + 1)? (16)
e [ (PK + 1) ][(PK + 1)PE +1)]

Assuming P > 0, tge/thm < 1 when either

K< lad > | 2P PK
an 1+ K + 2PK

or,

24 P+ PK
K>landE< |2 T2
an [1+K+2PK]
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Fig. 5. Variation of (H/i)(1 + k')/(H/@)a(1 + k'a) with f) for mechanically mixed packings with K = 5,
2, 1,0.5,0.3, 0.2, 0.125 and 0.1 with E held constant at 5; linearity of (H/i) with w, assumed.
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That is to say, for certain sets of conditions a coupled column configuration is likely
to carry out an analysis faster than an equivalent mechanically mixed column. Fig.
5 shows the variation of (H/a)(1 + Kk')/(H/#)a(1 + k’,) for mechanically mixed
columns with £ = 5 and various X from 0.1 to 5, exactly the conditions considered
for coupled columns in Fig. 4. We see that (H/i)(1 + k') may pass through a true
maximum at an intermediate composition, unlike with coupled column systems.

As an example of comparison between mixed and coupled columns, consider
K = 2. Then for tge/typm < 1, E > (2 + 3P)/(3 + 4P). Therefore, if E < 2/3 we can
expect fre < Igm Over the full intermediate composition range (P: 0 to o). Converse-
ly, if E > 3/4 then tgc > tgy over the full intermediate range. If 2/3 < E < 3/4 then
trc < try for part of the range and fgc > trm for the remainder of the range. Fig.
6 illustrates just such an occurrence wherein fgc and gy are plotted for X = 2 and
E = 0.6, 0.7 and 0.8.

CHIGYC + KM CHIGD (1 + K )

0.6 1 | [ 1

0.0 0.2 0.4 0.6 0.8 1.0
fA or w,

Fig. 6. Variation of (H/u}(1 + Kk’)/(H/#)a(1 + k'a) with composition for serially connected columns
(—) and mechanically mixed columns (---—-) with K = 2 and E = 0.6, 0.7 and 0.8 (upper, middle and
lower pairs, respectively).

Finally, it is interesting to note that the conditions which favour coupled col-
umn operation (either K < 1 with KE > 1, or K > 1 with KE < 1) are more
restrictive than, and are enclosed within, the conditions for tgc < tgy. Also when K
= 1 then trc = tgum for all values of E.

CONCLUSIONS

The equations derived for minimum (H/i7) and for fastest time of analysis are
essential to our approach to optimization of speed of analysis with binary coupled



12 J. H. PURNELL, P. S. WILLIAMS

columns via the window diagram technique. The general conditions disadvantageous
to serial column operation are characterised, and for the first time we are in a position
to determine the optimized time of analysis for serial column operation and compare
it to the best time of analysis expected for mechanically mixed packed columns.
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